Equivalent Fractions

Preparing for Proportions

Equivalent Fractions - Fractions that look different but show the same amount.

- Fractions tell what portion of a whole you need, have, or want.
- Equivalent fractions are infinite; they go on forever.
- $\frac{3}{4}$ and $\frac{6}{8}$ are equally shaded, so they are equivalent fractions.

 Make equivalent fractions by multiplying or dividing the numerator (top) and denominator (bottom) by the same number.

$$\frac{1}{4} \times \frac{2}{2} = \frac{2}{8}$$

$$\frac{2}{3} \times \frac{7}{7} = \frac{14}{21}$$

$$\frac{10}{12} \div \frac{2}{2} = \frac{5}{6}$$

$$\frac{1}{4} \times \frac{2}{2} = \frac{2}{8} \qquad \qquad \frac{2}{3} \times \frac{7}{7} = \frac{14}{21} \qquad \qquad \frac{10}{12} \div \frac{2}{2} = \frac{5}{6} \qquad \qquad \frac{40}{45} \div \frac{5}{5} = \frac{8}{9}$$

Choose any number to make an equivalent.

Division works best with large fractions that divide evenly.

Write three equivalent fractions for each.

1.
$$\frac{5}{10}$$
 =

2.
$$\frac{8}{9}$$
 =

3.
$$\frac{10}{30}$$
 =

4.
$$\frac{4}{6}$$
 =

Claire has 32 stuffed animals and 8 of them are named Princess.

Claire's Animals

- a) What fraction of her animals are not named Princess?
- b) Write two equivalent fractions.

5.
$$\frac{1}{4} \times - = \frac{6}{24}$$

6.
$$\frac{5}{7} \times - = \frac{25}{35}$$

7.
$$\frac{15}{27} \div - = \frac{5}{9}$$

5.
$$\frac{1}{4} \times - = \frac{6}{24}$$
 6. $\frac{5}{7} \times - = \frac{25}{35}$ **7.** $\frac{15}{27} \div - = \frac{5}{9}$ **8.** $\frac{36}{42} \div - = \frac{6}{7}$

9.
$$\frac{6}{12} = \frac{6}{24}$$

10.
$$\frac{2}{8} = \frac{8}{10}$$

9.
$$\frac{6}{12} = \frac{8}{24}$$
 10. $\frac{2}{8} = \frac{8}{45}$

12.
$$\frac{4}{}=\frac{16}{32}$$

13.
$$\frac{3}{4} = \frac{3}{24}$$

14.
$$\frac{9}{27} = \frac{3}{12}$$

13.
$$\frac{3}{4} = \frac{12}{24}$$
 14. $\frac{9}{27} = \frac{3}{12}$ **15**. $\frac{12}{12} = \frac{12}{36}$

16.
$$\frac{16}{5} = \frac{4}{5}$$

17.
$$\frac{2}{15} = \frac{2}{3}$$

17.
$$\frac{2}{15} = \frac{2}{3}$$
 18. $\frac{2}{-} = \frac{1}{6}$

19.
$$\frac{8}{36} = \frac{1}{9}$$

20.
$$\frac{7}{8} = \frac{21}{}$$

21.
$$\frac{5}{8} = \frac{1}{64}$$

22.
$$\frac{25}{40} = \frac{5}{10}$$

22.
$$\frac{25}{40} = \frac{5}{7}$$
 23. $\frac{16}{7} = \frac{16}{28}$

24.
$$\frac{3}{16} = \frac{12}{16}$$

25.
$$\frac{5}{18} = \frac{5}{9}$$

25.
$$\frac{5}{18} = \frac{5}{9}$$
 26. $\frac{2}{33} = \frac{22}{33}$

27.
$$\frac{1}{4} = \frac{1}{64}$$

28.
$$\frac{2}{3} = \frac{8}{3}$$

29.
$$\frac{8}{12} = \frac{1}{48}$$

29.
$$\frac{8}{12} = \frac{1}{48}$$
 30. $\frac{6}{48} = \frac{1}{48}$

31.
$$\frac{18}{5} = \frac{18}{90}$$

32.
$$\frac{4}{}=\frac{24}{30}$$

Equivalent Fractions

Preparing for Proportions

Equivalent Fractions - Fractions that look different but show the same amount.

- Fractions tell what portion of a whole you need, have, or want.
- Equivalent fractions are infinite; they go on forever.
- $\frac{3}{4}$ and $\frac{6}{8}$ are equally shaded, so they are equivalent fractions.

 Make equivalent fractions by multiplying or dividing the numerator (top) and denominator (bottom) by the same number.

$$\frac{1}{4} \times \frac{2}{2} = \frac{2}{8}$$

$$\frac{2}{3} \times \frac{7}{7} = \frac{14}{21}$$

$$\frac{10}{12} \div \frac{2}{2} = \frac{5}{6}$$

$$\frac{1}{4} \times \frac{2}{2} = \frac{2}{8} \qquad \qquad \frac{2}{3} \times \frac{7}{7} = \frac{14}{21} \qquad \qquad \frac{10}{12} \div \frac{2}{2} = \frac{5}{6} \qquad \qquad \frac{40}{45} \div \frac{5}{5} = \frac{8}{9}$$

Choose any number to make an equivalent.

Division works best with large fractions that divide evenly.

Write three equivalent fractions for each. Answers will vary.

1.
$$\frac{5}{10} = \frac{1}{2} \frac{10}{20} \frac{15}{20}$$

2.
$$\frac{8}{9} = \frac{16}{18} \frac{24}{27} \frac{32}{36}$$

1.
$$\frac{5}{10} = \frac{1}{2} \frac{10}{20} \frac{15}{30}$$
 2. $\frac{8}{9} = \frac{16}{18} \frac{24}{27} \frac{32}{36}$ 3. $\frac{10}{30} = \frac{1}{3} \frac{5}{15} \frac{20}{60}$ 4. $\frac{4}{6} = \frac{2}{3} \frac{8}{12} \frac{12}{18}$

4.
$$\frac{4}{6} = \frac{2}{3} \frac{8}{12} \frac{12}{18}$$

Claire's Animals

Claire has 32 stuffed animals and 8 of them are named Princess.

a) What fraction of her animals are not named Princess?

24/32

b) Write two equivalent fractions. 3/4, 6/8 ...

Complete.

5.
$$\frac{1}{4} \times \frac{6}{6} = \frac{6}{24}$$

6.
$$\frac{5}{7} \times \frac{5}{5} = \frac{25}{35}$$

5.
$$\frac{1}{4} \times \frac{6}{6} = \frac{6}{24}$$
 6. $\frac{5}{7} \times \frac{5}{5} = \frac{25}{35}$ 7. $\frac{15}{27} \div \frac{3}{3} = \frac{5}{9}$ 8. $\frac{36}{42} \div \frac{6}{6} = \frac{6}{7}$

8.
$$\frac{36}{42} \div \frac{6}{6} = \frac{6}{7}$$

9.
$$\frac{6}{12} = \frac{12}{24}$$

10.
$$\frac{2}{8} = \frac{8}{32}$$

11.
$$\frac{1}{5} = \frac{9}{45}$$

12.
$$\frac{4}{8} = \frac{16}{32}$$

13.
$$\frac{3}{4} = \frac{18}{24}$$

14.
$$\frac{9}{27} = \frac{3}{9}$$

15.
$$\frac{4}{12} = \frac{12}{36}$$

16.
$$\frac{16}{20} = \frac{4}{5}$$

17.
$$\frac{10}{15} = \frac{2}{3}$$

18.
$$\frac{2}{12} = \frac{1}{6}$$

19.
$$\frac{8}{36} = \frac{2}{9}$$

20.
$$\frac{7}{8} = \frac{21}{24}$$

21.
$$\frac{5}{8} = \frac{40}{64}$$

22.
$$\frac{25}{40} = \frac{5}{8}$$

23.
$$\frac{4}{7} = \frac{16}{28}$$

24.
$$\frac{3}{4} = \frac{12}{16}$$

25.
$$\frac{10}{18} = \frac{5}{9}$$

25.
$$\frac{10}{18} = \frac{5}{9}$$
 26. $\frac{2}{3} = \frac{22}{33}$

27.
$$\frac{1}{4} = \frac{16}{64}$$

28.
$$\frac{2}{3} = \frac{8}{12}$$

29.
$$\frac{8}{12} = \frac{32}{48}$$
 30. $\frac{6}{48} = \frac{1}{8}$

30.
$$\frac{6}{48} = \frac{1}{8}$$

31.
$$\frac{1}{5} = \frac{18}{90}$$

32.
$$\frac{4}{5} = \frac{24}{30}$$